首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3139篇
  免费   128篇
  国内免费   644篇
化学   3467篇
晶体学   12篇
力学   64篇
综合类   51篇
数学   42篇
物理学   275篇
  2023年   13篇
  2022年   22篇
  2021年   56篇
  2020年   87篇
  2019年   84篇
  2018年   63篇
  2017年   117篇
  2016年   116篇
  2015年   71篇
  2014年   109篇
  2013年   257篇
  2012年   166篇
  2011年   166篇
  2010年   132篇
  2009年   161篇
  2008年   163篇
  2007年   214篇
  2006年   207篇
  2005年   190篇
  2004年   189篇
  2003年   177篇
  2002年   154篇
  2001年   127篇
  2000年   111篇
  1999年   92篇
  1998年   86篇
  1997年   79篇
  1996年   80篇
  1995年   78篇
  1994年   65篇
  1993年   58篇
  1992年   49篇
  1991年   45篇
  1990年   35篇
  1989年   31篇
  1988年   25篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
排序方式: 共有3911条查询结果,搜索用时 171 毫秒
1.
A reversibly cross‐linked epoxy resin with efficient reprocessing and intrinsic self‐healing was prepared from a diamine Diels‐Alder (DA) adduct cross‐linker and a commercial epoxy oligomer. The newly synthesized diamine cross‐linker, comprising a DA adduct of furan and maleimide moieties, can cure epoxy monomer/oligomer with thermal reversibility. The reversible transition between cross‐linked state and linear architecture endows the cured epoxy with rapid recyclability and repeated healability. The reversibly cross‐linked epoxy fundamentally behaves as typical thermosets at ambient conditions yet can be fast reprocessed at elevated temperature like thermoplastics. As a potential reversible adhesive, the epoxy polymer with adhesive strength values about 3 MPa showed full recovery after repeated fracture‐thermal healing processes. The methodology explored in this contribution provides new insights in modification of conventional engineering plastics as functional materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2094–2103  相似文献   
2.
A series of phenolic epoxy resin (PEP) modified polyurethane foams (PUF) were prepared via an in-situ polymerization, one step process. It was found that the epoxy modified PUF foam exhibited a perforated network structure with larger cell size, higher open cell porosity and enhanced ovality compared with pure PUF. With increasing content of PEP, the tensile strength, elongation at break and low temperature modulus of PUF decreased. A single Tg was observed for PEP modified PUF, indicating that the two component phases of the polyurethane-epoxy were miscible. With increasing PEP content, the Tg of PUF shifted slightly to higher temperature, tan δmax dropped to lower values, and the retention value of the storage modulus at ?20 and ?10?°C increased. For pure PUF, the cell walls degraded and the structure became disordered after aging under heat and stress, while for PUF/20wt%PEP, the degradation degree was obviously reduced, and an orientation of the cells along the stress direction and a density increase was observed. During aging at 200?°C, the retention of the mechanical properties of PUF/20wt% PEP was much higher than that of pure PUF, and it showed superior stability under heat and stress, attributed to incorporation of the thermally resistant oxazolidone rings and benzene rings in the PU backbones, the highly cross-linked networks of the polyurethane-epoxy systems and the obvious orientation of the cells under stress.  相似文献   
3.
Two epoxy resins containing degradable acetal linkages were synthesized by the reaction of cresol novolak‐type phenolic resin (CN) with vinyl ethers containing a glycidyl group [cyclohexane dimethanol vinyl glycidyl ether (CHDMVG) and 4‐vinyloxybutyl glycidyl ether (VBGE). Carbon fiber‐reinforced plastics (CFRPs) were prepared by heating laminated prepreg sheets with CN‐CHDMVG resin (derived from CN and CHDMVG) and CN‐VBGE resin (derived from CN and VBGE), in which carbon fibers are impregnated with epoxy resins containing curing agents [dicyandiamide (DICY)] and curing accelerator [3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU)]. CN‐CHDMVG‐based CFRPs and CN‐VBGE‐based CFRPs exhibited almost the same tensile strength as the conventional bisphenol‐A‐based CFRPs. CN‐CHDMVG‐based CFRPs and CN‐VBGE‐based CFRPs underwent smooth breakdown with the treatment of hydrochloric acid in tetrahydrofuran at room temperature for 24 h to regenerate strands of carbon fibers. The surface conditions of the recovered carbon fibers had little changes during degradation and recovery processes on the basis of scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). The recovered carbon fibers exhibited almost the same tensile strength as virgin carbon fibers and hence would be reused for the production of CFRPs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1052–1059  相似文献   
4.
Reproducible and uncharacteristic tensile stress–strain behavior of cured glassy epoxy‐amine networks produces distinctive fracture surfaces. Test specimens exhibiting plastic flow result in mirror‐like fracture surfaces, whereas samples that fail during yield or strain softening regions possess nominal mirror‐mist‐hackle topography. Atomic force microscopy and scanning electron microscopy reveal branched nodule morphologies in the 50‐nm size scale that may be responsible for the unusual tensile properties. Current hypothesis is that plastic flow of the glassy thermoset occurs through the existence and deformation of these nodular nanostructures. The thermal cure profile of the epoxy‐amine thermoset affects the size and formation of the nodular nanostructure. Eliminating vitrification during thermoset polymerization forms a more continuous phase, reduction in size of the nodules, and eliminates the capacity of the material to yield in plastic flow. This maximizes nanostructure connectivity of the glassy epoxy‐amine thermoset and reduces strain to failure significantly. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1333–1344.  相似文献   
5.
Adhesively bonded joints using epoxy are widely used in aircraft and aerospace structures. Quality control and defect detection during epoxy curing in such applications is critical. We used single-sided nuclear magnetic resonance (NMR) to nondestructively probe and spatially resolve the change in the characteristic NMR relaxation time (T2) of epoxies during curing on a substrate. Time-dependent T2 values were fit to a Weibull function to model temporal changes in the NMR measurables. Our results demonstrate that the reduction in molecular mobility of various epoxy/curing agent mixtures occurs more rapidly at the interface than in the bulk. Further use of single-sided NMR to acquire spatially resolved T2 data will provide a route for elucidatory epoxy curing studies. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 616–623  相似文献   
6.
Thermoset (TS) epoxy resins can be toughened with a thermoplastic (TP) for high-performance applications. The final structure morphology has to be controlled to achieve high mechanical properties and high impact resistance. Four polyethersulfone-modified epoxy resins are considered. They consist of different epoxy monomer structure (TGAP, triglycidyl-p-aminophenol and TGDDM, tetraglycidyl diaminodiphenylmethane) and a fixed amount of thermoplastic, and they are cured with two different amounts of curing agent. A reaction-induced phase separation occurs for all formulations generating morphologies, different in shapes and scales. The aim is to control the final morphology and in particular its dominant length scale. This morphology depends on the phase separation process, from the initiation to its final stage. The initiation relies on the relative miscibility of the components and on the stoichiometry between epoxy and curing agent. The kinetics depends on the viscosity of the systems. The different morphologies are characterized by electron microscopy or neutron scattering. Dynamic mechanical analysis allows confirming the presence of a phase separation even when it is not observable by electron microscopy. Vermicular morphologies with few hundreds nanometer width are obtained for the systems containing the TGAP as epoxy monomer. Systems formulated with TGDDM presents morphologies on much smaller scale of order a few tens of nanometers. We interpret the different sizes of the morphologies as a consequence of a larger viscosity for the TGDDM systems as compared to the TGAP ones rather than by a latter initiation of phase separation.  相似文献   
7.
To reduce the crystallization rate of polyoxymethylene (POM) to meet the requirement of thick-walled and large-sized articles production, and maintain high crystallinity as well as obtain refined crystalline grains to ensure the strength and stiffness simultaneously, thermoplastic phenolic resin (PF) and multiwalled carbon nanotubes (MWCNTs) were used as crystal growth inhibitor and nucleating agent, respectively, and their effects on the crystallization of POM were studied in details. The results showed that PF is an effective inhibitor and MWCNTs exhibits excellent nucleation effect on POM. Based on the obtained results, their synergistic influences on the crystallization process of POM were investigated. It is found that the objective of decreasing the crystallization rate while maintaining high crystallinity and forming fine crystalline grains can be realized. The 97/3/1 wt% POM/PF/MWCNTs, compared with those of neat POM, The T c shifts by 3.3°C to a lower temperature, the crystallization enthalpy increases by 16.1 J/g and the full width at half-maximum widens by 48.5%. The modulation effect of PF and MWCNTs on the crystallization is closely related to the PF content and dispersion, the distribution and dispersion of MWCNTs in the PF and POM phases.  相似文献   
8.
Renewable propane-1,2,3-triyl tris(9-(oxiran-2-yl) nonanoate) (EGU, 100 wt% biogenic) and a tricarboxylic acid triglyceride (CGTU) hardener (85.7 wt% biogenic) were synthesized from 10-undecenoic acid (10-UDA) and used to produce epoxy resins with 52–92 wt% biobased carbon. CGTU was prepared by thermally activated thiol-ene coupling of thioglycolic acid onto propane-1,2,3-triyl tris(undec-10-enoate), (GUD) in the absence of solvent. The characterized CGTU was used as a green hardener of blends based on EGU and a conventional bisphenol A-based epoxy pre-polymer (DGEBA) at various mass percentages (0–100 wt%) with an stoichiometric epoxy/acid equivalent ratio. Calorimetric studies revealed higher peak temperature, lower reaction heats, and longer gelation times in resins with high EGU proportion, evidencing the lower reactivity of aliphatic EGU compared with aromatic DGEBA. Cured resins were yellowish transparent rubber-like materials with glass transition temperatures (Tg) varying from −14 °C to −42 °C and tensile strength in the range of 1750 kPa–790 kPa, for 0 and 100 wt % EGU, respectively. The soluble fraction of all resins was less than 4.3%, reflecting a high level of crosslinking. Thermosets with high biobased content showed both UV-light protection and visible light transparency.  相似文献   
9.
The Jonscher universal power law for ac conductivity versus frequency (f = ω/2π) in the dispersion region was tested for a multiwall carbon nanotube/epoxy nanocomposite. The effect of changes in agglomerate morphology on the fitting parameters A and n in the equation σac = n was investigated. Changing nanotube agglomerate morphology was tracked by optical microscopy through curing. Evolving morphology was compared alongside ac conductivity obtained via a broadband dielectric spectrometer to elucidate possible physical meaning of the universal power law in the context of this system. The ?logA/n was unaffected by changes in agglomerate morphology affected during cure, yet connected with each other in their dependence on temperature. For this system, the relationship between the fitting parameters in the universal dynamic response equation remains empirical at this stage with regard to biphasic “texture” or morphology within such a network. Electrical conductivity σ versus frequency ω for a composite consisting of agglomerated multiwalled carbon nanotubes dispersed throughout a cured epoxy matrix was discovered to follow the empirical universal dynamic response equation of Jonscher. The frequency behavior of the exponent n is discussed in terms of underlying morphology throughout which charge carriers migrate. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1918–1923  相似文献   
10.
采用磁控溅射技术在聚甲基丙烯酸甲酯(PMMA)树脂基托表面沉积一层纳米银(Ag NPs)涂层.研究了纳米银改性PMMA树脂基托的机械性能,为改性材料的临床应用提供理论基础.根据国际标准ISO2409:2007描述的划格法对涂层与基底的附着力强度进行测试,各组试件的接触角采用静态液滴法测量,三点弯曲法检测试件的弯曲强度.结果显示,各组涂层与PMMA基底材料结合良好,各组试件的表面润湿性变化不大,其中PMMA-Ag NPs80s组疏水性略有提高,各组试件的弯曲强度均符合国家标准.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号